МУНІЦИПАЛЬНИЙ БЮДЖЕТНИЙ ЗАГАЛЬНООСВІТНІЙ ЗАКЛАД «ГВАРДІЙСЬКА ШКОЛА-ГІМНАЗІЯ № 2» СІМФЕРОПОЛЬСЬКОГО РАЙОНУ РЕСПУБЛІКИ КРИМ

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ГВАРДЕЙСКАЯ ШКОЛА-ГИМНАЗИЯ № 2» СИМФЕРОПОЛЬСКОГО РАЙОНА

РЕСПУЕЛИКИ КРЫМ

КЪЫРЫМ ДЖУМХУРИЕТИ СИМФЕРОПОЛЬ РАЙОНЫНЫНЪ «2-САНЛЫ ГВАРДЕЙСКОЕ МЕКТЕП-ГИМНАЗИЯСЫ» МУНИЦИПАЛЬ БЮДЖЕТ УМУМТАСИЛЬ МУЭССИСЕСИ

ул.Острякова, 1А, пгт. Гвардейское, Симферопольский район, 297513 ОКПО 00792024; ОГРН 1159102009505; ИНН/КПП 9109008879/910901001; ОКУД 0200000 тел/факс 0(652) 32-38-59, e-mail: gvardeiskoe2@yandex.ru

Показательные и логарифмические неравенства и их системы в Едином государственном экзамене по математике

Подготовила: Кожевникова Т.В., учитель математики МБОУ «Гвардейская школа-гимназия №2»

СОДЕРЖАНИЕ

ВСТУПЛЕНИЕ	3
РАДЕЛ І	
Методы решения показательных и логарифмических неравенств	3
1.1.Метод интервалов.	4
1.2. Неравенства, содержащие показательные выражения	6
1.3. Неравенства, содержащие логарифмические выражения	7
1.4.Метод замены	8
1.5. Разбиение области определения неравенства на подмножества	9
1.6.Метод рационализации.	10
рарпеп и	
РАЗДЕЛ II	_
Решение систем неравенств, содержащих показательные и логари	ифмические
неравенства	
2.1.Системы показательных и логарифмических неравенств	12
2.2.Системы с логарифмами по переменному основанию	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

ВСТУПЛЕНИЕ

Задание 14 Единого государственного экзамена по математике — это задание повышенного уровня сложности, представляющее неравенство или систему неравенств, содержащее рациональные, иррациональные, показательные, логарифмические или модульные выражения. При решении этих неравенств я должна показать знания теорем о равносильности неравенств определенного вида, умения использовать стандартные и нестандартные методы решения.

При решении неравенства допустимы любые математические методы – алгебраический, функциональный, графический, геометрический и т.д.

При алгебраическом подходе выполняют равносильные преобразования неравенств, в частности, тождественные преобразования отдельных выражений, входящих в неравенство.

При функциональном подходе используют свойства функции (монотонность, ограниченность и т.д.). В некоторых случаях алгебраический и функциональный подходы взаимозаменяемы.

РАДЕЛ І

Методы решения показательных и логарифмических неравенств

Рассмотрим основные методы решения показательных и логарифмических неравенств, которые встречаются в Едином государственном экзамене по математике, а именно, в задании 14.

Напомню, что решением неравенства с неизвестным x называют число, при подстановке которого в это неравенство вместо x получается верное числовое неравенство. Решить неравенство — значит найти все его решения или показать, что их нет.

При подготовке по данной теме особое внимание следует уделить применению метода интервалов.

1.1. Метод интервалов

Решение неравенств методом интервалов опирается на свойства функций, связанные с изменением знаков функции.

При решении неравенств методом интервалов можно придерживаться следующего алгоритма.

- 1. Записать данное неравенство в виде $f(x) \succ 0$ или $f(x) \prec 0$, аналогично для нестрогих неравенств.
 - 2. Найти ОДЗ неравенства.
 - 3. Найти нули функции: f(x) = 0.
- 4. Отметить нули функции на ОДЗ и найти знак функции в каждом промежутке, на которые разбивается ОДЗ.

Заметим, что при решении неравенств $f(x) \lor 0$ или $\frac{P(x)}{Q(x)} \lor 0$ методом интервалов, где символ " \lor " заменяет один из знаков неравенств: " \le ", " \ge ", " \checkmark ", " \succ " , можно обойтись без промежуточных вычислений, если выражение f(x) или $\frac{P(x)}{Q(x)}$ содержит все линейные двучлены с положительными старшими коэффициентами или записано в каноническом виде:

$$(x-a_1)\cdot(x-a_2)\cdot...\cdot(x-a_n)$$
 или $\frac{(x-a_1)\cdot(x-a_2)\cdot...\cdot(x-a_n)}{(x-b_1)\cdot(x-b_2)\cdot...\cdot(x-b_m)}$.

В этом случае на самом правом промежутке двучлены положительны, а значит, выражение f(x) или $\frac{P(x)}{Q(x)}$ положительно. Далее на промежутках расставляют знаки в соответствии с правилом знакочередования.

Пример 1. Решить неравенство $x^3 + 8x^2 + \frac{50x^2 + x - 7}{x - 7} \le 1$.

Решение.

$$x^{3} + 8x^{2} + \frac{50x^{2} + x - 7}{x - 7} \le 1 \Leftrightarrow x^{3} + 8x^{2} + \frac{x - 7}{x - 7} + \frac{50x^{2}}{x - 7} - 1 \le 0 \Leftrightarrow x^{3} + 8x^{2} + \frac{50x^{2}}{x - 7} \le 0;$$

$$\frac{x^{3}(x - 7) + 8x^{2}(x - 7) + 50x^{2}}{x - 7} \le 0 \Leftrightarrow \frac{x^{4} + x^{3} - 6x^{2}}{x - 7} \le 0.$$

Для решения неравенства воспользуемся методом интервалов.

1. Обозначим
$$f(x) = \frac{x^4 + x^3 - 6x^2}{x - 7}$$
.

2.
$$D(f) = (-\infty, 7) \cup (7, +\infty)$$
.

3. Нули функции:
$$f(x) = 0$$
, $\frac{x^4 + x^3 - 6x^2}{x - 7} = 0$.

$$x^4 + x^3 - 6x^2 = 0;$$

 $x^2 (x^2 + x - 6) = 0;$
 $x^2 + x - 6 = 0$ или $x^2 = 0;$
 $x_1 = 2,$ $x_3 = 0.$
 $x_2 = -3;$

Перепишем неравенство в виде $\frac{x^2(x-2)(x+3)}{(x-7)} \le 0$.

4. Так как в записи выражения f(x) все двучлены записаны в каноническом виде, то на промежутке $(7;+\infty)$ выражение положительно. Далее расставляем знаки, учитывая кратность корней.

Имеем $f(x) \le 0$ при всех $x \in (-\infty; -3] \cup \{0\} \cup [2; 7)$.

Otbet:
$$(-\infty; -3]; \{0\}; [2; 7)$$
.

1.2. Неравенства, содержащие показательные выражения

При решении показательных неравенств вида $a^{f(x)} \succ a^{g(x)}$ и $a^{f(x)} \prec a^{g(x)}$ используют свойство монотонности показательной функции.

Если
$$a \succ 1$$
, то $a^{f(x)} \succ a^{g(x)} \Leftrightarrow f(x) \succ g(x)$ и $a^{f(x)} \prec a^{g(x)} \Leftrightarrow f(x) \prec g(x)$.

Если
$$0 \prec a \prec 1$$
, то $a^{f(x)} \succ a^{g(x)} \Leftrightarrow f(x) \prec g(x)$ и $a^{f(x)} \prec a^{g(x)} \Leftrightarrow f(x) \succ g(x)$.

Решая показательные неравенства, следует знать, что если в левой и правой частях показательного неравенства стоят только произведения, частные, корни или степени, то данное неравенство можно непосредственно свести к простейшему применением опорных формул слева направо или решить логарифмированием обеих частей.

Заметим, что неравенство $a^x \prec b$ при $b \le 0$ решений не имеет, а неравенство $a^x \succ b$ выполняется при всех x. действительных значениях.

Пример 2. Решите неравенство $4^{x^2+x-3} - 0.5^{2x^2-6x-2} \le 0.$

Решение.

$$4^{x^2+x-3} - 0.5^{2x^2-6x-2} \le 0 \Leftrightarrow 2^{2x^2+2x-6} - 2^{-2x^2+6x+2} \le 0 \Leftrightarrow 2^{2x^2+2x-6} \le 2^{-2x^2+6x+2}.$$

Показательная функция $y = 2^t$, возрастающая, следовательно

$$2x^2 + 2x - 6 \le -2x^2 + 6x + 2$$
;

$$4x^2 - 4x - 8 \le 0$$
;

$$(x+1)(x-2) \leq 0;$$

Имеем, $x \in [-1; 2]$.

Ответ: [-1;2].

1.3. Неравенства, содержащие логарифмические выражения

Простейшими логарифмическими неравенствами обычно считают неравенства вида $\log_a f(x) > \log_a g(x)$, где $a > 0, a \ne 1$.

Для решения простейшего логарифмического неравенства применяем равносильные преобразования с учетом ОДЗ, а при переходе от значений функции к значениям аргумента (то есть к выражениям, стоящим под знаком логарифма) — значение a.

Если
$$a \succ 1$$
, то неравенство $\log_a f(x) \succ \log_a g(x) \Leftrightarrow \begin{cases} f(x) \succ g(x), \\ f(x) \succ 0, \\ g(x) \succ 0 \end{cases} \Leftrightarrow \begin{cases} f(x) \succ g(x), \\ g(x) \succ 0. \end{cases}$

Если
$$0 \prec a \prec 1$$
, то неравенство $\log_a f(x) \succ \log_a g(x) \Leftrightarrow \begin{cases} f(x) \prec g(x), \\ f(x) \succ 0, \\ g(x) \succ 0 \end{cases} \Leftrightarrow \begin{cases} f(x) \prec g(x) \\ f(x) \succ 0. \end{cases}$

Решение более сложных логарифмических неравенств выполняется:

- 1. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида:
- Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
- Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
 - 2. С помощью метода интервалов.

Пример 3. Решите неравенство
$$\log_{(\sqrt{5})^{x+\frac{1}{3}}} 5^{\frac{4}{x^2+3x}} \le \frac{6}{3x+1}$$
.

Решение.

Для решения неравенства воспользуемся формулой $\log_{a^n} a^m = \frac{m}{n}$.

$$\log_{(5)^{\frac{1}{2}x+\frac{1}{6}}} 5^{\frac{4}{x^2+3x}} \le \frac{6}{3x+1} \Leftrightarrow \frac{\frac{4}{x^2+3x}}{\frac{1}{2}x+\frac{1}{6}} \le \frac{6}{3x+1} \Leftrightarrow \frac{4}{x^2+3x} \cdot \frac{6}{3x+1} - \frac{6}{3x+1} \le 0 \Leftrightarrow \frac{6}{3x+1} \left(\frac{4}{x^2+3x} - 1\right) \le 0 \Leftrightarrow \frac{x^2+3x-4}{x(x+3)\left(x+\frac{1}{3}\right)} \ge 0 \Leftrightarrow \frac{(x+4)(x-1)}{x(x+3)\left(x+\frac{1}{3}\right)} \ge 0$$

Используя метод интервалов, получаем $x \in [-4; -3) \cup \left(-\frac{1}{3}; 0\right) \cup \left[1; +\infty\right)$.

Otbet:
$$[-4; -3); (-\frac{1}{3}; 0); [1; +\infty)$$

1.4.Метод замены

Как при решении уравнений, так и при решении неравенств достаточно часто бывает эффективным метод замены. Возможны два случая.

- 1. В случае, когда неравенство имеет вид $F(f(x)) \lor 0$, где символ " \lor " представляет один из знаков неравенств: " \le ", " \ge ", " \prec ", " \succ ", заменой f(x) = t оно сводится к неравенству (обычно рациональному) $F(t) \lor 0$. Решением последнего неравенства относительно t может оказаться один промежуток или объединение нескольких промежутков. Отметим сразу, что при введении новой переменной удобно не указывать ее область значений при решении нового неравенства с этой переменной. При выполнении обратной замены это нужно учитывать.
- Если в итоге получают $t \in (a;b)$, то далее решают систему неравенств $\begin{cases} f(x) \succ a, \\ f(x) \prec b. \end{cases}$
- ullet Если в итоге получают $t\in (-\infty;a)\cup (b;+\infty)$, то решают совокупность неравенств $\begin{bmatrix} f(x)\prec a, \\ f(x)\succ b. \end{bmatrix}$
- 2. Иногда в сложных неравенствах $F(t) \lor 0$ удается достигнуть упрощения путем замены x = f(t). В этом случае получается неравенство $F(f(t)) \lor 0$, которое оказывается более простым. Далее после решения последнего неравенства выполняется обратная замена.

Пример 4.Решите неравенство $3^x + 10 \cdot 3^{3-x} \ge 37$. Решение.

В первую очередь избавляемся от числовых слагаемых в показателях степеней, переносим все члены неравенства в одну сторону и приводим подобные слагаемые.

$$3^{x} + 10 \cdot 3^{3-x} \ge 37 \iff 3^{x} + 10 \cdot 27 \cdot \frac{1}{3^{x}} - 37 \ge 0 \iff 3^{x} + \frac{270}{3^{x}} - 37 \ge 0.$$

Пусть $3^x = t$, тогда неравенство примет вид:

$$t + \frac{270}{t} - 37 \ge 0 \Leftrightarrow \frac{t^2 - 37t + 270}{t} \ge 0 \Leftrightarrow \frac{(t - 10)(t - 27)}{t} \ge 0 \Leftrightarrow t \in (0; 10] \cup [27; +\infty).$$

При $0 < t \le 10$ получим: $0 < 3^x \le 10$, $x \le \log_3 10$, $x \in (-\infty; \log_3 10]$.

При $t \ge 27$ получим: $3^x \ge 27 \Leftrightarrow 3^x \ge 3^3 \Leftrightarrow x \ge 3, x \in [3; +\infty)$.

Итак, решением неравенства является $x \in (-\infty; \log_3 10] \cup [3; +\infty)$.

Otbet: $(-\infty; \log_3 10]; [3; +\infty)$.

1.5. Разбиение области определения неравенства на подмножества

Разбиение области допустимых значений неизвестной неравенства на промежутке позволяет упростить решение некоторых неравенств. В этом случае неравенства рассматривают отдельно на каждом промежутке. Данный метод позволяет решать логарифмические неравенства.

Пример 5. Решите неравенство $\log_{2x-3}(10-3x) \ge 0$.

Решение.

ОДЗ:
$$\begin{cases} 10-3x \succ 0, & \begin{cases} -3x \succ -10, \\ 2x-3 \succ 0, & \Leftrightarrow \\ 2x \succ 3, \\ 2x \neq 4; \end{cases} \Leftrightarrow \begin{cases} x \succ 3\frac{1}{3}, \\ x \succ 1, 5, & \Leftrightarrow x \in (1,5;2) \cup \left(2; 3\frac{1}{3}\right). \end{cases}$$

На данной области определения функция $y = \log_{2x-3}(10-3x)$ может как монотонно возрастать, так и убывать, а, следовательно, необходимо рассмотреть два случая:

1. 0 < 2x - 3 < 1

$$\begin{cases} 0 < 2x - 3 < 1, \\ \log_{2x - 3} (10 - 3x) \ge 0; \end{cases} \Leftrightarrow \begin{cases} 3 < 2x < 4, \\ 10 - 3x \le (2x - 1)^0; \end{cases} \Leftrightarrow \begin{cases} 1, 5 < x < 2, \\ 10 - 3x \le 1; \end{cases} \Leftrightarrow \begin{cases} 1, 5 < x < 2, \\ x \ge 3; \end{cases} \Rightarrow x \in \emptyset.$$

2. 2x-3 > 1

$$\begin{cases} 2x-3 \succ 1, \\ \log_{2x-3}(10-3x) \ge 0; \end{cases} \Leftrightarrow \begin{cases} 2x \succ 4, \\ 10-3x \ge (2x-1)^0; \end{cases} \Leftrightarrow \begin{cases} x \succ 2, \\ 10-3x \ge 1; \end{cases} \Leftrightarrow \begin{cases} x \succ 2, \\ x \le 3; \end{cases} \Rightarrow x \in (2;3].$$

Учитывая область допустимых значений неравенства, получаем $x \in (2;3]$.

Ответ: (2;3]

1.6.Метод рационализации

Метод рационализации известный в математической литературе под другими названиями (метод декомпозиции – В.П. Моденов или метод замены множителей – В.И. Голубев) используют для упрощения сложных неравенств, содержащих логарифмические, показательные, иррациональные выражения и выражения с модулем.

Метод рационализации заключается в замене сложного выражения F(x) на более простое выражение G(x) (в конечном счете, рациональное), при которой неравенство $G(x) \lor 0$ равносильно неравенству $F(x) \lor 0$ на области определения выражения F(x).

Данный метод используют для решения неравенств, в которых левая часть равна нулю и только с учетом области определения неравенства.

Выделим некоторые типовые выражения F и соответствующие им рационализирующие выражения G (см. табл.), где f, g, h, p, g - выражения G переменной $x(h \succ 0, h \ne 1; f \succ 0; g \succ 0)$, a - фиксированное число $(a \succ 0, a \ne 0)$.

Рационализация функций

$N_{\overline{0}}$	Трансцендентная функция	Рациональные функции
1	$\log_a f - \log_a g$	(a-1)(f-g)
1a	$\log_a f - 1$	(a-1)(f-a)
1б	$\log_a f$	(a-1)(f-1)
2	$\log_h f - \log_h g$	(h-1)(f-g)
2a	$\log_h f - 1$	(h-1)(f-h)
2б	$\log_h f$	(h-1)(f-1)
3	$\log_f h - \log_g h(g \neq 1, f \neq 1)$	(f-1)(g-1)(h-1)(g-f)
4	$h^f - h^g (h \succ 0)$	(h-1)(f-g)

No	Трансцендентная функция	Рациональные функции
4a	$h^f - 1$	(h-1)f
5	$f^h - g^h (f \succ 0, g \succ 0)$	(f-g)h
6	f - g	(f-g)(f+g)

Отметим, что рассмотренный метод рационализации обобщается на произведение и частное любого числа типовых выражений.

Перечислим ряд следствий (с учетом области определения неравенства):

$$\log_{h} f \cdot \log_{p} g \vee 0 \Leftrightarrow (f-1)(g-1)(h-1)(p-1) \vee 0;$$

$$\log_{h} f + \log_{p} g \vee 0 \Leftrightarrow (fg-1)(h-1) \vee 0;$$

$$\sqrt{f} - \sqrt{g} \vee 0 \Leftrightarrow f - g \vee 0;$$

$$\frac{h^{f} - h^{g}}{h^{p} - h^{q}} \vee 0 \Leftrightarrow \frac{f - g}{p - q} \vee 0;$$

$$f^{h} - g^{p} \vee 0 \Leftrightarrow (a-1)(\log_{a} f^{h} - \log_{a} g^{p}) \vee 0.$$

В указанных равносильных переходах символ " \lor " заменяет один из знаков неравенств: " \le ", " \ge ", " \prec ", " \succ ".

Пример 6. Решите неравенство $\log_{2-x}(x+2)\log_{x+3}(3-x) \le 0$.

Решение.

ОДЗ:
$$\begin{cases} x + 2 \succ 0, & x \succ -2, \\ 3 - x \succ 0, & x \prec 3, \\ 2 - x \neq 1; \\ 2 - x \succ 0, & x \neq 1; \\ x + 3 \succ 0, & x \leftarrow -3, \\ x \neq -2; \end{cases} \Leftrightarrow \begin{cases} x \succ -2, & x \prec 3, \\ x \neq 1; & x \in (-2;1) \cup (1;2). \\ x \leftarrow -3, & x \neq -2; \end{cases}$$

Заменим данное неравенство, используя метод рационализации

$$\log_h f \cdot \log_p g \le 0 \Leftrightarrow (f-1)(g-1)(h-1)(p-1) \le 0.$$

Имеем:

$$(2-x-1)(x+2-1)(x+3-1)(3-x-1) \le 0;$$

 $(x-1)(x+1)(x+2)(x-2) \le 0;$

Используя метод интервалов и учитывая ОДЗ, получаем $x \in (-2;-1] \cup (1;2]$.

Ответ:
$$(-2;-1] \cup (1;2]$$
.

РАЗДЕЛ II

Решение систем неравенств, содержащих показательные и логарифмические неравенства

2.1 Системы показательных и логарифмических неравенств

Пример 1. Решите систему неравенств
$$\begin{cases} 36^{\frac{x-\frac{1}{2}}{2}} - 7 \cdot 6^{x-1} + 1 \ge 0, \\ x \cdot \log_4 \left(5 - 3x - x^2 \right) \ge 0. \end{cases}$$

Решение.

Решим первое неравенство системы методом замены, для этого приведем его к одному основанию.

$$36^{x-\frac{1}{2}} - 7 \cdot 6^{x-1} + 1 \ge 0 \Leftrightarrow \frac{1}{6} \cdot 6^{2x} - \frac{7}{6} \cdot 6^{x} + 1 \ge 0.$$

Пусть $6^x = t$, тогда

$$\frac{1}{6} \cdot t^2 - \frac{7}{6} \cdot t + 1 \ge 0 \Leftrightarrow t^2 - 7t + 6 \ge 0 \Leftrightarrow (t - 6)(t - 1) \ge 0 \Leftrightarrow t \in (-\infty; 1] \cup [6; +\infty).$$

Возвращаясь к обратной замене, получаем:

$$\begin{bmatrix} 6^x \le 1, & \Leftrightarrow \\ 6^x \ge 6; & \Leftrightarrow \end{bmatrix} \begin{cases} 6^x \le 6^0, & \Leftrightarrow \\ 6^x \ge 6^1; & \Leftrightarrow \end{bmatrix} x \le 0, & \Leftrightarrow x \left(-\infty; 0 \right] \cup \left[1; +\infty \right).$$

Решим второе неравенство системы методом интервалов.

1. Пусть
$$f(x) = x \cdot \log_4 (5 - 3x - x^2)$$
.

2.ОД3:

$$5-3x-x^{2} > 0;$$

$$x^{2}+3x-5 < 0;$$

$$\left(x-\frac{-3-\sqrt{29}}{2}\right)\left(x-\frac{-3+\sqrt{29}}{2}\right) < 0;$$

$$x \in \left(\frac{-3-\sqrt{29}}{2}; \frac{-3+\sqrt{29}}{2}\right).$$

3. Нули функции: f(x) = 0, $x \cdot \log_4(5 - 3x - x^2) = 0$.

$$x_1 = 0$$
 или $\log_4 (5-3x-x^2) = 0$; $5-3x-x^2 = 4^0$; $x^2+3x-4=0$;
$$\begin{bmatrix} x_2 = -4, \\ x_3 = 1. \end{bmatrix}$$

4.С учетом ОДЗ и знака неравенства имеем решение второго неравенства:

$$x \in \left(\frac{-3 - \sqrt{29}}{2}; -4\right) \cup [0;1].$$

Объединяя, решения обеих неравенств получаем решение системы

неравенств:
$$x \in \left(\frac{-3-\sqrt{29}}{2}; -4\right) \cup \{0\} \cup \{1\}.$$

Otbet:
$$\left(\frac{-3-\sqrt{29}}{2};-4\right);\{0;1\}.$$

2.2.Системы с логарифмами по переменному основанию

Пример 2. Решите систему неравенств
$$\begin{cases} 3^{x} + \frac{54}{3^{x}} \ge 29, \\ \log_{x+3} \left(\frac{x+1}{4} \right) \le 0. \end{cases}$$

Решение.

Решим первое неравенство системы методом замены.

$$3^x + \frac{54}{3^x} \ge 29$$

Пусть $3^x = t$, тогда неравенство примет вид:

$$t + \frac{54}{t} - 29 \ge 0 \Leftrightarrow \frac{t^2 - 29t + 54}{t} \ge 0 \Leftrightarrow \frac{(t - 2)(t - 29)}{t} \ge 0 \Leftrightarrow t \in (0; 2] \cup [27; +\infty).$$

Возвращаясь к обратной замене, получаем:

При
$$0 < t \le 2$$
 получим: $0 < 3^x \le 2$, $x \le \log_3 2$, $x \in (-\infty; \log_3 2]$.

При
$$t \ge 27$$
 получим: $3^x \ge 27 \Leftrightarrow 3^x \ge 3^3 \Leftrightarrow x \ge 3, x \in [3; +\infty)$.

Итак, решением первого неравенства исходной системы является $x \in (-\infty; \log_3 2] \cup [3; +\infty)$.

Решим второе неравенство системы $\log_{x+3} \left(\frac{x+1}{4} \right) \le 0$ методом рационализации.

ОДЗ:
$$\begin{cases} \frac{x+1}{4} \succ 0, \\ x+3 \succ 0, \Leftrightarrow \begin{cases} x \succ -1, \\ x \succ -3, \Rightarrow x \in (-1; +\infty). \\ x \neq -2; \end{cases}$$

Заменим данное неравенство, используя метод рационализации $\log_h f \le 0 \Leftrightarrow (f-1)(h-1) \le 0$.

Имеем:

$$\left(\frac{x+1}{4}-1\right)\left(x+3-1\right) \le 0 \Leftrightarrow \left(x-3\right)\left(x+2\right) \le 0.$$

Используя метод интервалов и учитывая ОДЗ, получаем $x \in (-1;3]$.

Объединяя, решения обеих неравенств получаем решение системы неравенств: $x \in (-1; \log_3 2] \cup \{3\}$.

Otbet: $(-1; \log_3 2]; \{3\}.$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Учебник: Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И..: Алгебра и математический анализ для 10 класса: Учебн.пособие для учащихся шк. и классов с углубл. изуч. математики. 3-е изд., дораб.- М.: Просвещение, 1992г. 335с.
- 2. Учебник: Шарыгин И.Ф., Голубев В.И.: Факультативный курс по математике: Решение задач: Учебн. пособие для 11 кл. средн. шк. М.: Просвящение, 1991. 384с.
- 3. Пособие для учителя: Галицкий М.Л., Мошкович М.М., Шварцбурд С.И.: Углубленное изучение курса алгебры и математического анализа: Метод. Рекомендации и дидикт. материалы: Пособие для учителя.- 2-е изд., дораб.- М.: Просвещение, 1990г. 352с.
- 4. Сборник задач: Егерев В.К., Зайцев В.В., Кордемский Б.А., Маслова Т.Н., Орловская И.Ф., Позойский Р.И., Ряховская Г.С., Сканави М.И., Федорова Н.М.: Сборник задач по математике для конкурсных экзаменов во втузы. .- 2-е изд., доп.-М.: «Высш. школа», 1972г. 400с.
- 5. Лекции: Корянов А.Г., Прокофьев А.А.: материалы курса «Готовим к ЕГЭ хорошистов и отличников: лекции 1-4. М.: Педагогический университет «Первое сентября», 2012. 104с.

ИНТЕРНЕТ - РЕССУРСЫ

1. http://reshuege.ru/